H=-16t^2+120t+300

Simple and best practice solution for H=-16t^2+120t+300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+120t+300 equation:



=-16H^2+120H+300
We move all terms to the left:
-(-16H^2+120H+300)=0
We get rid of parentheses
16H^2-120H-300=0
a = 16; b = -120; c = -300;
Δ = b2-4ac
Δ = -1202-4·16·(-300)
Δ = 33600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{33600}=\sqrt{1600*21}=\sqrt{1600}*\sqrt{21}=40\sqrt{21}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-40\sqrt{21}}{2*16}=\frac{120-40\sqrt{21}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+40\sqrt{21}}{2*16}=\frac{120+40\sqrt{21}}{32} $

See similar equations:

| 32=2+2d | | 32=2+5d | | 4+(4x-3)=7 | | -5x-4(1-3x)=18+7x | | 4j−10=3j−8 | | 2/x+3/x-1=1 | | 8r+5=3r+30 | | 4x^2-3x-5=10x-2x^2 | | 2x-(5x+7)=4+(14+2x) | | 4x^2-2=12x | | 4x^2+75-166=0 | | 24=17y-9y | | -0.025x^2+90x=860 | | 10/3=x/(-5/2) | | 2=4x+3/5-x/3 | | 1/7x+1/3x+6=0 | | 3x^2-1x=-3x+8 | | -9t+2=-9t-7(6÷2(49)+8) | | 1/7x-1/3x+6=0 | | g/3+10=12 | | -7x-3.5=4x-3.2 | | 9(5-z)/8=z | | -3x+6x=4(x+3)-x+12 | | 3x+x/2+x+7=151 | | 3z+18=2z+2 | | 6(x+2)+9=-9 | | 3x+45=x+45 | | 3x+x=-88 | | 4x-5+5x=-50 | | 6y+1=4 | | 3/4-x/12=1 | | 4p-3(3-2p)=6(p-2)-9 |

Equations solver categories